Iterative Conditional Fitting for Gaussian Ancestral Graph Models

نویسندگان

  • Mathias Drton
  • Thomas S. Richardson
چکیده

Ancestral graph models, introduced by Richardson and Spirtes (2002), generalize both Markov random fields and Bayesian networks to a class of graphs with a global Markov property that is closed under conditioning and marginalization. By design, ancestral graphs encode precisely the conditional independence structures that can arise from Bayesian networks with selection and unobserved (hidden/latent) variables. Thus, ancestral graph models provide a potentially very useful framework for exploratory model selection when unobserved variables might be involved in the data-generating process but no particular hidden structure can be specified. In this paper, we present the Iterative Conditional Fitting (ICF) algorithm for maximum likelihood estimation in Gaussian ancestral graph models. The name reflects that in each step of the procedure a conditional distribution is estimated, subject to constraints, while a marginal distribution is held fixed. This approach is in duality to the well-known Iterative Proportional Fitting algorithm, in which marginal distributions are fitted while conditional distributions are held fixed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Score-based vs Constraint-based Causal Learning in the Presence of Confounders

We compare score-based and constraint-based learning in the presence of latent confounders. We use a greedy search strategy to identify the best fitting maximal ancestral graph (MAG) from continuous data, under the assumption of multivariate normality. Scoring maximal ancestral graphs is based on (a) residual iterative conditional fitting [Drton et al., 2009] for obtaining maximum likelihood es...

متن کامل

Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property

The AMP Markov property is a recently proposed alternative Markov property for chain graphs. In the case of continuous variables with a joint multivariate Gaussian distribution, it is the AMP rather than the earlier introduced LWF Markov property that is coherent with data-generation by natural block-recursive regressions. In this paper, we show that maximum likelihood estimates in Gaussian AMP...

متن کامل

Iterative Conditional Fitting for Discrete Chain Graph Models

‘Iterative conditional fitting’ is a recently proposed algorithm that can be used for maximization of the likelihood function in marginal independence models for categorical data. This paper describes a modification of this algorithm, which allows one to compute maximum likelihood estimates in a class of chain graph models for categorical data. The considered discrete chain graph models are def...

متن کامل

Graphical Methods for Efficient Likelihood Inference in Gaussian Covariance Models

In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bi-directed graph into a maximal ancestral graph that (i) represents the same independence structure as the original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i...

متن کامل

Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors

In recursive linear models, the multivariate normal joint distribution of all variables exhibits a dependence structure induced by a recursive (or acyclic) system of linear structural equations. These linear models have a long tradition and appear in seemingly unrelated regressions, structural equation modelling, and approaches to causal inference. They are also related to Gaussian graphical mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004